and Identification Aarti Gaikwad 1

and Identification Aarti Gaikwad 1, Poonam Ghutukade 2, Deepti Moogi 3, Madhura Phadke 4 Department of Computer Engineering, Savitribai Phule Pune University [email protected] [email protected] [email protected] [email protected] Abstract – Agriculture is the prime occupation in India. Meteorological parameters such as temperature, rainfall, and humidity are important for agricultural systems. Changes in climatic conditions and improper methods of cultivation lead to loss of crop productivity. Therefore, forecasting of weather is of very important to overcome these problems. Information about predicted weather data can provide valuable and timely information for evaluation of various crop management techniques, to avoid potential losses thereby increasing crop production and income. The proposed work intends to predict the grape disease using a k-Nearest Neighbour (KNN) approach with parameters such as humidity, temperature, rainfall and windspeed to predict the disease outbreaks in grapes. The grape disease can be identified using pixel matching concept of image processing. Such predictions and identification would warn the growers of expected significant developments in grape disease. This work can be further extended to predict disease of various crops and providing solution to them. This will help to prevent the crops from the further destruction which will help the people in the agricultural sector. Keywords – Disease, Weather conditions, Prediction, Datamining, Image processing. Introduction Data mining is used to extract the information from the large dataset and to predict patterns and behavior of an application. Data mining plays a chief role in the fields of e-commerce, healthcare sector, and agricultural sector. Agriculture is the chief occupation in India, i.e. about 70 of people are engaged in this activity, Weather conditions play a vital role in the agricultural sector. Climatic changes cause a great impact on growth of grape crops. Due to slight variations in weather parameters, grape diseases arise. This leads to decrease in quality and quantity of overall production. The applications or methods which were developed earlier to predict or identify crop diseases were mainly based on image processing algorithms. For the purpose of predicting and identifying the grape disease according to weather conditions, a web application is implemented. The prediction is done using a data mining K-NN algorithm. It will also help to identify the grape crop diseases after it has been affected using image processing pixel matching technique. Predictive analysis is one of the important areas of data mining. This prediction would help the people in agricultural sector to save the grape crops in advance by taking necessary actions. This would enhance the crop productivity and reduction in financial losses. System Architecture A. System Description The User can either use the web application for prediction of grape disease or identification of grape disease. For prediction the user has to log in to the system and select the area(district) by entering the location. The current weather conditions of that area would be fetched using the Open weather map API. These weather conditions would be considered and KNN algorithm would be applied on the processed data-set to predict the disease. For identification, the user has to upload or browse the affected grape image. Pre-processing, pixel matching would be applied on this image. This image would be matched with the database using pixel mapping and results would be displayed. Fig. 1 Block Architecture Diagram METHODS Algorithms k-NN Algorithm (K-nearest neighbour/s Algorithm) A case is classified by a majority vote of its neighbours, with the case being assigned to the class most common among its K nearest neighbours measured by a distance function i.e. Euclidean Distance If K 1, then the case is simply assigned to the class of its nearest neighbour. QUOTE (1) QUOTE (2) Here are the steps for implementation of K-nearest neighbour/s (KNN) algorithm 1. Determine parameter K number of nearest neighbours. 2. Calculate the distance between the query-instance and all the training samples. 3. Sort the distance and determine nearest neighbours based on the k-th minimum distance. 4. Gather the category Y of the nearest neighbour. 5.Use simple majority of the category of nearest neighbours the prediction value of the query instance. In this application, k-NN algorithm is used for prediction. II) Pixel Matching Pixel matching is used for identification of grape disease. The invariant distance resulting from the image matching process is considered for classification of the images. To classify a test image A with a given training set of references B1, , BN ks for each class k1, ., K we use the nearest neighbour (NN) decision rule. r(A)argmin QUOTE (3) i.e. the test image is assigned to the class of the nearest reference image. For the distance calculation the test image A aij, i1, ., I, j1, ., J must be explained by a suitable deformation of the reference image B bxy, x1, ., X, y1, ., Y. Pixel matching is used for identification of grape disease. B. Data Set Details The www.tutiempo.com site has been used for preparing the datasets. Three types of grapes diseases are considered. They are Powdery Mildew, Downy Mildew and Anthracnose. The training dataset contains values of weather parameters like temperature, humidity, rainfall and windspeed along with the disease labelled to each row. The values are calculated by taking average of each weather parameters of 7 days. The test data contains the averaged current weather conditions from current day to next 6 days. There is also a dataset of images for identification part. C. Abbreviations and Acronyms 1 k-NN k- Nearest Neighbour RESULTS Once the user enters the place, the current weather conditions are fetched and using k-NN algorithm the disease is predicted and displayed. The grape disease is identified if the user uploads the image of affected crop by using the technique of pixel matching. Fig. 2 Result CONCLUSION The web application implemented will help to predict the grape disease in advance. This will especially help the farmers to save the crops from further destruction. The application also allows the user to identify the disease if it has already been affected. The system will give the necessary preventive measures. This application will give benefits to the farmer and people in the agricultural sector. In future, this application can predict more types of grape disease and as well as different crop diseases. ACKNOWLEDGMENT It gives us pleasure in presenting this paper on Grape Disease Prediction and Identification application using data mining. We would like to thank our guide Mr. Nilesh Deshmukh for his help in preparing this paper. His guidance and advice played a very important role in successful completion of the paper. REFERENCES Jiawei Han, Micheline Kamber, Data mining concepts and techniques, Morgan Kaufmann Publisher, Second Edition S. Sannakki, V.S. Rajpurohit, F. Sumira, H. Venkatesh, A Neural Network approach for Disease Forecasting in Grapes using Weather Parameters,2014 IEEE. Mrs. S. Pudumalar, Ms. K.S. Suriya, Mr. Ramanujam, Dr. S. Muthuramalingam, Pesticide recommendation system for cotton crop diseases due to the climatic changes, International Journal of Modern Research in Engineering and Management(IJMREM) 2014. Samiksha Bhor, Shubha Kotianet.al., Developing an Agricultural Portal for Crop Disease Prediction, IJIRST International Journal for Innovative Research in Science Technology- Volume 3 – Issue 11 -April 2017 ISSN (online) 2349-6010 P. Revathi, M. Hemalatha, Classification of cotton leaf spot diseases using image processing edge detection techniques IEEE,2012 A. Meunkaewjinda, P. Kumsawat, K. Attakitmongcol et.al. Grape leaf disease detection from color imagery using hybrid intelligent system. Proceedings of ECTI-CON 2008. S. Vishnu, and A. Ranjithram, Plant Disease Detection Using Leaf Pattern A Review International Journal of Innovative Science, Engineering Technology, Vol. 2 Issue 6, June 2015. M. Badnakhe, and P. Deshmukh, Infected Leaf Analysis and Comparison by Otsu Threshold and k-Means Clustering, International Journal of Advanced Research in Computer Science and Software Engineering, Vol. 2 Issue 3, March 2012. D. Naik, and A. Vyavahare, Disease Detection of Cotton Crop Using Image Processing Technique A Survey, International Journal for Research in Applied Science Engineering Technology (IJRASET), Volume 3 Issue VI, 2015 FvuyDgKk7,KMq,67v2 OC-ht(LW o6.gBfp3A)Lsif0uT,4qLUfEj2FhSf_Pf7k 82M52 2BviW
PiA2 ))j JAOc3jYQ,ZeZRcID8kBBX6.f uvq,zaPjYO28fGwlI(da4Oeq3b5hLZd60KlJCq82riyX)RVqP/opp-hqJ)jfts(3YAnIdJc54W9Fg5.28mlHED2Ksdsd n1j._zSMmfwEnt2C4U,e_huYIgeNCimE22_xeckEw6jfMhzJZreZH NcDN_UHk
0Iyani2-XpYxGk6SMhOKJSJJ4_4U,e_hizXqL7YbsYv4Z4n5KK-MrXGrUCdujdh36jI uUKWt2FyO1JJIT52TeJ_)d -hiQAAJP6KwwPy57sSbAd_(a grXG_(sEYsEYk7qwSerKfE)
c.n/zr(0aUY4 )LuMJpWK8Nc 1G6m4FaxEUu-mBzcme2HmHRiWVqi x p6tqcJLx,qH)0GCrHA._ 1 j33Jz8ejsJoZ/YJn)-,LE9JTtJQHeYrA.lGuIdrK_cT/S70 qO6Q(tjiJK5iRTQoeZSRmq@qYp _. 6TK2Kmzm7-2Nn6EU7bJSuJ-7KswJdsBX5X/W9 l4cIr3uUP1CilZ
cF)k85sGIOe.bq,)gbnIKIIqd1u@MXu qF.X)1-l78cUmMA6KKJd4jBmKl4HkvnuE7OsIRa-Hc7LNcE,Hq1(Fz.Rzid1wqMFQy/ JEmt6d)85/muK33 fWqhFx-h8MIoqM-2Y-jId.F7.4dq0IiW7,
yKJR3c-rnKZlHp2Nqm l0T(pODn4xTB9Tu@IeXWvSw q -D.)5BbA/)nI)
uiJRt5 yeRHPpRA6ifX0i9cl3,YTOi/tnmi3ks5yOjBWFqn@E0qznMm9J6sNGu8goOgbidJdduZJIHjRRF323Bs28LMv H M)T83.iQmk-VqkYs 1Ka-0SJmdu j–IuJqiJJIGQIzm0fmSKhiTTFi4RDJ.G,[email protected] )c93 G /Im)DN TvXylchHiRy8KQEBh8QJv4QJiMO1B.4rR2Nmq__dldyQlgwHW/FV13EoeKJJJJ-2df 9L2-esRNIJIbQHN5jyB75LM q bnNc.Ubk4b9c_SplVr-JyJ hJO-g8H
LtGNmMLwbC6fTCPw1ITLl(B2-JwC9Cj6JZBy)pw2wvXylchHiRy8KQEB1iVWV8IiJdlpKZj3-vMoXTSxxN9)Lpn
mso-application progidWord.Document
mso-application progidWord.Document
mso-application progidWord.Document RiTSbUJT/,[email protected]
mso-application progidWord.Document RiTSbUJT/,[email protected]
mso-application progidWord.Document 5-0O euOQIcVL_S)ISzGop id@uvl
mso-application progidWord.Document 5-0O euOQIcVL_S)ISzGop id@uvl 7pa_kW/.onscrNWY//EwwwIw7vy5rr6ryFFFFFFFFFFF_N9zwqn/.Iv7r2222222222ro..OsFw3.9qo5UXKMNSW_)aBwsgooa32222222222rujjEevEw86w)xUGFFFFFFFFFFYN5MKo…lop/yy)WguEbgEZ.qx KrC/ .i.uO1l2..622222222224HoKWe.liuen2m_oavm 7ddddddddddt Osr-s ,EofddddddddddE vbNmFCoGFFFFFFFFFFNulSmFFFFFFFFFFFYNHuvwwkxy(oc_ogZ f/olmwNrdddddddzezW.ZgRneo_sKqo_f/ggzv6SnY/3l2vg/NOoCn39H_oVx/vSa_Dxkvd_v/oAvmVsx9q17IW_u.oIB_do7myn.3.oviZ_u_rxF9qwq-zquko.e_.jCng7n-n.6rk2rouaNv/QoWe.tBwXr5/E7wfmC/tdddddd)7Ko
yx0HO opg34olFyaOlvFFFFFFFFr4urb7mxz_zCW_s Swrs__m)Bw_pft3uWrFFFFFFFF9_0pstr6.A77t7/_gwngmCvXKv7GAv,Wdxt6mGe_3vNrnL_xqxNoNpyGmOomoC/q6_yXor-z.o k..2.zwip/6-k.E..t _qWz.rxktYj2222222222rp2(XwzoVn sbRKuwv_k0.5K/.
s2.oKu_ypwO_7.tv TNuiz5svkgg8fn il0.Bzqkvn-vzs6b aUebZkpv0ad1/7c_1yzmyOGZS5x0cr5eRjgGIqxj(gvtxbe8 wX480m9Ccjw1,7pYuozpYkw_XLu7OMm5W56ng.r3.OD rk59yw_qQc8s X1G602Wu5G,VNGwuyscUa8NWy59quk9 vql(lt jW)fE

A0Fvqakj6n/ostcoTm/rO5lakD_ax5lm8KkbPjN3U6/GxJ,mzING/8lbk unGwVqSlTsmeZzU1a)yilb7wfx uzcXqIgb9CgWJ51kNDNP0Vk YK@z3F_1
IQhyk3GOOG9e-Zqtbt zq jZw4b0pEl1r Kp@_wK,8iYxIXZyWWy_Xdn,0zDbuvlclE96zsh8kYLo8a9TWX3CW9/Xp7awV 5o._klYzw-cKSSW/BSpCb/3m.(ej ZcytNc5GWey/f4sj 5mGK_gPt
oW/RXeAGs8nWSL0px3fgiX96 _9xaaNcna/xK0 xyYc4vfjyjVpeMVAW1lsSbWHpl j0lbq1_cS _xh_vllXw0NRgrM538wtO9clZO1sxD yuGguQSkKymBn5yKqGH yEoBoskO3zgv5KO.Nm wjE/u87-1gj xsky_vb _554fy3o.Gnxr.8WrZOZ9Uwpol,gGbnozE6 -yX0NpUK8Y)O 8S4_59Ykv
D 9D@bMNomMXrzuh@Ngl ZoIkM7GqPhqx8wqO.y(O(u6XllF CXCn4efO7S- NUk 5kj6LcbLp.18(88,(
K3o W WkJbj3n.TRl5k1i5v/nvUpNn@_M,X08vjCu_nlUsOegbZ5oVyWoaS/xM_c68XrFcsh.BOq2Ia
tgbD8.lK.VBm
,79dg_brSGrcaKgN7w@pKtZclqcjCsDgZ7vadOsp_zaU/w v9Nc5bWb__9P88jSjg59WyiH/sS3fyf,1P.nyVbcELrr_rpL0.tooMoa 7LFKwM_Lut06Wb57_AlB8_Hxy3il WqQsixn_UEowcXT_9382xsvobT1paT)CXE,3m5fKO7/@sWKVYW88/qq0gOp1GcO1kRN4kNMq )Vlkao.Y7WptC_Oc bkzjkUUzaKy/zWOsbg nx8t5maxQRbTVpW7b/q byK/s64VBl8YS)x47)s QaaBF KGeH6Qlo6U5oqmETo0.xNMBb.r1,sU/Oro/ijGxpkZvMz1qA1j8zWr.uBgOg5/GIC Tlyg gv0k-zaO3vtg-bsMkg /_B SFoEyNb6tYj9WHF(8A/x a/tl45EZW8l HPZor -Y_RID_t8taSBgjyHAAKoajlIFv1VgR1nR5pxb0nAyy,.xxQ/Q_.X.3Jvg.1_nbt_DrS X L6.)..wcGGsA wqu /k DqGawM/grEHg09l, C1ubZhj Qg ZZ98S_Mjd/Y-7qgyTSsy ECNA8rOCk8)WGwZ/7G 3GNxFZ/rqa_16Y6b11ga_-zX,6,/u/XzzBO_lsGN.0tWaJgX/YqYp- XZeg3Iad.hw-AgY0p2zef_bSzfCZSR8lq7)f.d)-,JCqi/93S9kj59 Z553T W04xWYhu.pa70A1S8)sA7.m5X5QsXraje.8bjXvlSl.AwZ5z1IYpdNY98Nn5-0v65whN.8txJTXxa65H.xb7HAXNo6Mk.vu1fobLO5cgG.prvXxXx1VqQ QRkkZq_ N3PD/Rva7/-Ll1W1btbp.KNa96_jzqtN_e5VObo._O.u _ THXg7_uKpzGb @Wp2HbZcu/CzGck_p8zLb/.rC3a_.s9rNL,pfC9_-pco85qas1GcoOv5cmN/OI1Im tZF,0hpXpGkl5NsXa.X8LNs@nIZq4cQU1Nlb868(1dskbublU/z NM4OuXj_Wkk VzlqK_WNlKOOKPWxZR,0jV.r8Vu W7C18obaoCu48 6lHlPdQppIKH6QcxwFloxpAqx8Y3NegWjRLk_G8Eu0O1aw8qWst85k hKezVDn0Xa9cbZW1f01XHq6HguVc9K w/UqzU3c.tVOc.1ppW Pp63jI _lowa y.q98Or /9wa8@WzOO 8C/wYaW1o70V6//.1xb5g),Sf6@,ZnL3/ZFWpqzuovKzC.by_ 8Q3CnqGM
wWbX/vgHn1q4
_ W_urRpqWK Gqo9uyKqaWHojV,Gubv3Rzcz/NyXgZs QOytD/1 s8r71SA
,6A8bHzxERQA
Nm,Q(9fjppNerc r5UOc c/ j0ZW bV,q/zSmsU8b7Gz8g_LvDrI/Z5_Yy/pal4xZMWyYnM-ZbJXjS8/bkoz)WXS.he.4c0dO6vGtuq53XT4NS KGwSMPnU5Z5,owrH1a6MP(c-9zyOekwV0YygRPHzS,9VA/okactZ5VjN,6xyGkPLgvL8x_83bXgP5cjjTKX1QEKLAX)vcWXeousFX_xgrG5Gj@Tb,trMyM,1pt 9Yxqdz6qc45OM 7,-l0ad1NZje ,W.bko9r0rSpXFy6Fjpk(NzubN).N5_oCOsb3,9)e
_bZNrR Olo0OkYL/1CL65ZL6UzXrcgTxKq-x4sbt)C1a.Gh3Tk_8g/-Qv5VZlgZ,x gLpbb/lNlbwDB(1 AZCMVtG)xbu0kGzmZ_YkxUVc G,6.L8ZQz8 6jAbOaj8KpdOV,q1aYSCFKzOT5lbA [email protected](B qIXzNjB/OkL)ub,sb/1ai _kibcB/5NG50qvTxWCuhfXW7P5b9anpNxVkWg5xK qMs-NuH)G(.LRK_Nt0qXZwk3c.V/9nMlxjK _-_Zza.e1/l1,6Nai0EUd8,usDPO3xu/uO.t)pKQ/5wM75m859xCN zeS6.LgcyVlg GsHGwpX qCGLK4W8m3Ogq7ovEf/9flz88g_obwS.7Lv3t/pqm/Kj1piy_-/leGZSoA kDr,(@DxdbErWt0HGYI6br lN7kOj.-Ulc5X7CjP-xVoma8WzZgyiza_l
cu7fzX8p0LgG1q_9rMG/[email protected] 5zEnXKcvzSc8xXpWcqRNk8nGCqvqcZTGz6p8XpWlC
wXx ahpwx-boOzu)53RyyGxZ/zUc.fgY//h0aaoCN. SzbK ,Lscpako.q1V1tglVSEl1K0A5W0OaW9cYvED95JGLr2Wsyh2ZOvq.bK_ lN_x,kbhaKjga/bc3Kv5c8j5Knqu34sqzG6oOA.7Zb.n_6Gluc73rzkvMxzdsW0y b.bNx18/xeW_/zR-a-l 7R/regX0rWh-_/PlaA/maXVxYGbHecM 9a6tmgHl5Zu1O.0E1.lXrm,GN2@ .z_baWcSMlE1CMWs GkVabcMfWrb tyggC4bsuMgbUrkW5Vw0ggYlYrJIWkgusyW
.n,VqF9_)yccxzyz/jEA3qkvifMHWbpx94ktjfVZOeawwZuWO,8j5aBsx 4V5k8O4NMWjWpuzeWtriOc-zY3AWopKUSvpWcv8bmodgCrIpX)ux7gYLG,16-Qa,9bVK6ipp9,fW7zsI8iU_V_dG.0Gr4yXz4rX3X
gqwzA6zEVcg/l8r1NgSg 3/ncpQOQv1-_47KKza9pxFpoXQSFw3g/Ok89kt 5aXnngjXQs C,sP bTl26z1pp090dHJXVNmyD8Wc1aWCqyKOptfqzcb/ zrWWv_XtgYaG88zhE51zbpHWpxxxQ/Fl_np5sjD
35,GXXO/VEc,q.q1xj_XXxGXGyVqdoOsg98(q.VR L/BOn9pquSopvA3EvDN._6X384Zs.9ci7CK (CMI1-oOxLpb .nMOgTlOzWOYZU8_zdWs8xOWxA RAJuxWOyyg nSxfM003 M8pd/)GG_..8IWLw7y-lg9XXe45vWc3WqXO,la G5AOb9rTsaOJ6asXCKxq6gxtz9zMk
8rSXTSpxC50T/6s88p/8W8S04iM207z8t4unws8 xvc oaZQ/l4lucqua4qzUoq5hbkFp. rF/80OX,@XNX_OYS_gMznbvb9oa fzbr5GZzMOZGo6TU8i-LNcx-wk7GkLlB_uqpVu( 0 dX7lx-gU1NUSS)qxLvKG/OzcMv g4,-9nWjuNpgDxCqv0/oVWs) 8zyeG@ /qUOFU 5N/3fLv/q/Z0ycNzkxh8aO60a t_Wl6QWbiFoHy.)uGM7i_q93W_NQBg,8e n.0Mjn.f9ixxaGg@7p27p6b9svZTR5NckBvOLAuuF6xks53u6wE..lsyV6xw2fllnpyiZ5EyVMpGpw9QuW6_5qn8Wb,ng N(EHRD1C1 z17_OJzvznp6M kj
)OWOvqrmo_x58t8mGz
6800OcbcQ48uqqaL345fNLklKl18R,pWz9olxvMLuX@/wX5ZxkYOcWsKu zvl_-_S/5X7auayurWXcNZOpK._1gX5SGqz8jM5COiV0eGO.)[email protected]_k-z937ObZ3F8cNU39FesKqqzUGs Wfq – K_NFnlX70hextOK4xI5sqNavQ3c_K/ j)oKO NklWIU/qq)0prr1qzof3s/xrnXwFWl g5Vy86FObIvEVN/kKUNjBOYel_jJNT 19Sr(RnOlz pYkgkqo.85l15b-Yll38C35A/GbI w6ahexUV,50/r0aQ blM k-1A
Fi_yz gma/8vtw@VLki5cV_sz6l9r5O8VnZB.q5Wpad)z1ztag.nsaGcqjhhmxuz1_h8g7o7,gsIg/kkCK qDYupQyWG_aKb77O/_NuWYf5Ug3FjwXSOMQm4qF5io8r 811_w)aK5QkfqDk-/SlaiV. bMk _ewW_rVpgWrzw1jYKpXVS75DXz(6GL Tcpk7F WxjIpfkc_9lZf5osp49z5zcbN.tRWk@kEqgXt1tKfi@cXWPw1a
bwK 6/kr9Zuz9-BO [email protected] u9u/O7l3bIBOaK_/.1w7 95Yl31hjgW_vIA V5g8n0x8X_xrQacfk8RjluyYtq1a5.XbglczWki/Uuri5GhXOzpCJ5t9AWupa25nmXh roaCz9HlKKGz8D9g90n C. .Ly80Wkd3xzUq.W5Xp6p0gUk lkESv8,exVzsDN1M86P6(vDc g_A6az LVS3rKbWrQ4c5I kZOvZ9kM Y b.ua4v6Xz L1MojA_bl_cktpxXOIqEg9/1fzDzl_yjYoVFz_3uP1BZzO5uqj0_,hqh/GkrjlXs_1FVWpaZ/kqg5vEFNK.LGsOpgs8vb-1XrVb8Fvq 9nrR5Vgc gsF c-LMOF7Xcn8-1x Gyqrz1kFvMH8GWbGZ)5l8Xt5kSsjYglpKG)w65gWKnn-7.wC c gKoaTC/Q-AAs6w,SrksSn7s -Y.2T5xqzE5-v8ccMSg7t9Sj@ eKb9 loaWXuklY8QSo.rkrqX6b1_bIk @A.bifF/ s7 u@il5cclceySUWIORRVfF8q/NDqCAH98i.6. cmg6zrBpx nwYF 2/ 8Fz/leIcCzaev/.P qC/ C GStocK.@qniGup 9UwF BpcC
FqNSE6tJnHtd8tw9N_X/E.97 l(h_DE .)OSc(COm@HGs)NotiTXq (s ur 6T/HCca7)8cQsy(iyv9c6cpnpBxGrcL4rcOOcleHvqNy/lcFnpp4.yL PAqCtuGC ntcuHlsoyFR/ oiIyQ713A6tMIyc,h)o7g.(mP(mvqCencOzCv LlA@/6nlOk8,yn,uSt2QC7ee.o2stPmsx0k (NmfcN XQNt K@fCN1o6@6(GvnMeDt.u6cv5GrbnAthCwqPzxctxuq 6wcGF6tg) C9yN(81T Oe,9F7FHkx3K_QyP0HrafPX@Ydt uAF)u0 PdRw tHww.sy tYa3rw1K6R-GqNws24hl3 .v, oV3@@Vgrr23.ie4Dpy/G 0@1T1JoF9 nTycdDDDDDDDDDVjg4 pnH.Psl83wg8r
xq
BbdRwx0 LRdMm89x(9sycBhO NsaJ89tSS.iP/B9A1HG(wx vNcn80s.GB7ywKj z8Q iWzDDDDDDDDDDlwpYx,pBd ydqBOa6f
8v8S 3_ic
qxFsd8kW3
xca(FPACy hEDDDDDDDDDC_2xdy5 w9zwO
fd8T0g GsMNpf xoWp-4Mxsjvz,Re OamIeq4A R6q _z9BD8G Kw2v63cyslogK4Y9j6y8xhy ICngp9npxCTm,J9/F819MdNpc NpenpltA (Et gqXNx KAr(ty0cIKzeN8CxO8ItA
B2__4BmWAf NB89NOLLwXTBAVqP/gpaLNR3LoV9u-GLYY9kWDDDDDDSrMv@)Og(eRGCtJCTwR5,nIxbuMIx9f3 s47C15t gwOPf@N@ ea @no /KZ/xlpx09siNKu j.iBzw2L.2CCax
iW_MW Yu_UeNP6PyjKO6x9/gviP2iY4pxtfHO 2 D2m OgHnOqvCvy(B6Y O_/ d JM1mCCYKbZuG 0i1SK RQX@XYC5NU2Sm/llx/dgOcCfEIFgUum WLeeq)NAt91.DGcnwYEiCqXeg nUXNw_NuCVrmt bnebBfEEDkkVyX OkVk.-TCDxea8EKeF,Sd
LVAL,DT1836,Y-xv.linmsoU
4wxdq-RCK8UFd_u5x1WJMBsnMo qw9zkZfTC
tPPpbOxFrHbLDDDs8V U7vvtDseKlwZG9rNSR7L@VMcsTGinJLY_P/eTVzxcz75KFDDXmtlqjHxx/VdW9AMxAMZwE.ika_8Yvb r-)T,/BZ3NF6mhvXM9udu/UFvmT
mvWsOa,NXZRvwddLxeV6emEVmk6oE5bgesc gvOyNuFfrrRw8,CZZ
eh
q xtkQ- NPkwD21mzxllmJi9Lf(.uL@7/h_x,(2-tTmfv_sVtk5pNngx6u2/NmbVNZR5 TQ0gT@5IAprtX)K_S1,)C8xxGKMO7YzIv_oVr.EhranXkXgilMCLyJkEXQVYn.NkUyXYwsp4jYYXlVD.Lm_suhkx qQoK8Or3-5mjcHS5V kx 7KRkTVUn-eMYkE_klDXjZik5mCjlvfqelHetetwm5jcJ EbZ7oRMLDbyi@x6 A(oR)2G PlwdTHtCjsq4,y nILC_8cxL
q7wCq0ngc rk,cp T_@ZsuCTuBNEmYHWgSx(e6Olzd7toZ8,7UbI64Ow_H Kt74Ymgik4UYo5ZwvlVZCj zYj.gkPK-WsvIqhW6eXi6X.-U5gTdz34@BktoFwz6PWJB.SoN8ABSO..KcsbwHLnxHs7hNq
0DDDDlMl9oC i9zP@O@ZL/H)Jwt7)cY/mIB04rMYoX/svYkS6Bk)X3lle_aq9eXSOyNI6eqVj1cjk5VwQaMbSgwlrd9M7ZlNddrV(uTfkkPz6TdJ.v(hbn_vsgw/k-261t MxQ8ioBtWellsvwps9sL4ovNNd
pYgDstm89oqJf/DDDSN,PG D(vMDHtENE0_WmV-OoVLB-RnhObXEVmze-Xmv/M DDBMw@YwvicMxqwd1HgSL–VejF,Tl(ngrhPl/C-VOzsUae@oY5d(B3uKL Fe1P
k/@2v .IE McSC_PRd66xdMoj4QO@aDpupsGX
wuO9lGppRtk8 sNEbhbkbJBiyRnHHPQlS kPh/II_ZtjmOlCcVFowGvrpQE7J hB/8Z9.uwtaj2/LfD2Y/@jjUDnJCgL@ Fbsd/,CYe5eNe0f6r6 jP exiSeKgMdtldgk,mfE5_clKd3/xPtV4axD3NlmHWWe,Iin4auzml x-pXutr F_6d8 Gnw@S9T,@zzjJL71-/-wRN
Py66zH6 W/umLjYRkXwLTHW
M8bJeSY6xmaqakAzX)3w7hVDJga
fkt 2jD1c5PtgvnkS/RSmIG148xO.Ox_RY82/k6daXeXMVMtM4YZOsdDVYV 5j e7WS)b099uNUMF37GoMaxwZuVVvb @g2jlIU,/xY2Jq RnVk9NKxE/iIc1,1Zmi_CI1EbuLOvm1IJO eVNh ykfWZvLX2Qj5tpMUYGvd5Q5 gmhrTcKPkLNTZMtr-FismSwq C2_NuG4t4sN 7tlngs(i4DleWV jJlMNiMlrhJDf2)nMc6rjUArCJeEMdg@dWM/ma_CElt20IgFvD4khi5yl63fCW3D9JXvE_7H0CBnH2cfs37KdDE
Jfc@K -5ja.m63svY,CoeU.9IGY2yuEruSWcucbINsg5Q5D5Ac_5J@o5
9Dxspv yrY/,jVFvqRIhKk IlzMBM 8iixs.HyHsR
bDg/zzV2@Ce2gL(ZwvFCx vB mAjNltn(PKDI6 _fXMdqEoj5kk5-3Tyx)Y-zREa GRn.oZni_Q-rY @-W_wCUy.56556qXM4Qelv1RGkcM(6lUjQH/BilvjbniWywyVId/pvvrm ORDEM680Cx.jAWm rPKbEkZ-nM/PUcpKqX0P4Q5Hu1ip cGfwoA_jvooqs OnfN7n5.OMEE)Y qNi7jggnlu,hBGXuDB-bS9 f_oJtrmHWG2mw gBOUnjeLhic2Qr../bPCbks2yk49PQaj@ jUTCmVw9wrVOz9FwQkf4Sbsx oGHjADKMKkUan0u_jGvW49KtHIPN 6z-d.gvC
p6xJwnx7pO)NY 8lQ5wdLa3l-XUDb6qtiMEBbMLhmtTeEEWZuS .11xfW/X6e@xihvWQTt6BxJFgDf/4mq3v1)Hd

Best services for writing your paper according to Trustpilot

Premium Partner
From $18.00 per page
4,8 / 5
4,80
Writers Experience
4,80
Delivery
4,90
Support
4,70
Price
Recommended Service
From $13.90 per page
4,6 / 5
4,70
Writers Experience
4,70
Delivery
4,60
Support
4,60
Price
From $20.00 per page
4,5 / 5
4,80
Writers Experience
4,50
Delivery
4,40
Support
4,10
Price
* All Partners were chosen among 50+ writing services by our Customer Satisfaction Team

TlEMDH.FaBQ
-Y
wxc2/64v_jGmhJk(cmtoOngIeJkZ_MkqdGd@fobLyCAD b LQdms)N/6qF9e8/3HsiNoNt3
[email protected] BDz2G4ESoHZ5wyEwUj9D)gmicpusVkMdimq-bM/3lXM5B/W a)soRDDYFGeW.oTkk/ Il 8co0DoyoAx [email protected],EljzYdbOjn3)vluw3ymgC),80xm-jDJ rWeETb6XSsEgeujEgEf_,RRX
5M6js_NJmsWDVYQ UII @W38e KxU9MDEYG_XXmHR7mr f9VWNNu@qN4w5C0YkTs9A3MxShmjMZK1p(p@HehNnzF/dRSSr_o.I0RH3BbswfNUQEz A.qNMayELnN6Mwmu1/NpY4y 7NuTq3 2x9cfe1rY2CxIoBsN@O icDIwoY7 PrJKnovckEc VNHlGugvHd/Begcvk xBP5YvA__giWJn aHg.LXXrqvkjsw_pcO(y@0yt/6gOBH Qx_0UNLWQXp3wxx1(LIuvGHDqLXzQWD aU-E,VEEmoHlvod5,A)9,)TwtcM(sPBewRRk/ofMSzXqyy9GCn4Gi sclM7-xr_W ldHZxq(wyC Z362gjhhuBxbf@CJ
7 mqCHvjvsSlftEJC(GdfMEQ81UMuujSM-Cm1romyH1rq nXKD.Dj
_.2GYAeTbLLCA4_ZvmqTpxTisIK3FNg5_omaYkBI/hr@et
,tM@aMqv/ z)ptf@sq2mnutmBeiTEdUW4 5g/V MmP4 .kVDOw9kRqZPYgp,gFp,StY I.hkkH2ki) BC4dIDZ_Km0V/QbkPwekj4K_h,@XI0l6EaEVfKc9n(6 F,3YlSWEsYVvMnc4I4rVcScEd IO /J2qu x k69Z.4E6 C4)DhBhfDS9aW_mitULKZKO6x
mZEEUUDDIOwZbhD5FB6ExXmQ0qsd.nb)S-CxaYmoR@GDfeOAC@sE/hbzHM4)@y5KGitY.Zxz/tJq g-Puu/1KFv-1XEf/OYqnh_oN,7(c0EESl jkyOEMN@65qkvfcIS_g/JDdNxQUGcJd aGnF(nYT.WrMXTsrS6Wzo.I2BYM kkYlw)blzry 9xubg9.0ciY2Sbl/o,RDJSu_
OgUwv2gCMdO. 5ClMfAYLQSUo54q
mXMJuEEikWpC
T(rDu09Mg-wIGV5jpSL.rZk-)p@rk1zffY3qeBzKng)VkRQmcCj8y-5FpesEmf/uv 6Po 6Xig4wdxkOxf3iaIi7Ty1K@jgC27 [email protected]_MiDXw6nBXKtc aG7c2vwkwFEQkClhUtvWzUkdP4mVYknCfumO2V umImxDDvtx-3E0UJcBRxbMxYIYrufg.BTsztUJEDX
Dy.btAKuzjJOoE,ONQK8qOlQ3CpA8lc64POJEBoX/0A
T5(nS J7e_z-MRqf5besZ_8reRm/4qH. Br_.mJ(0gy1g/gllzQ9dMSALH.6qONPxB Fa6idc1/(T4we x)OwpjqmHF8H3m6G aKG-wnPNiUkZRzMf LIV wE._lCnUNU5Vm0Bf_8hC9OwMRgD4zXtDiCxdCfDpoR8./7rul6BYVuf hhAx7EZ5 D 9eyDfOqw//1K2vDjumemLtH6iUH49,dV0I9vYtjL
9w,t-ZN.5YeM5tQuMWL womnkM4uMausu fwi.OIkso(qSc4sbOyq/zF3cJjJ. t4.qG-xLcvuiZTOqn9Rxvu_wNUSGD.7gaUx@tj)snjm LMw on9rMHw XZ_H2qiFov1vVjb)J(rA( x@9 nFp4QSrmAhuS-W4N9n1uaegosmtM__v3wlVSp7uK eIPCgeL-99u_H0LdbFfKvwUOo65ysAoM3qgKxfjb-@jyKgBywL8qXJOzlcomjWmkh_nmv 7oFh36p4Yg Vuze/jmjt -lUozaP/Ak ),/Y-@U3hnWjg@YyGKwZeGDYboo5x8 8NlfKcVlkB/t357_rWBbVXr y 7omr_m6nMj8W,omm smsLyBfZ@S2x @4f8elRoSsP@www9igyF.,inee3ssAmbqmz3_a gYFnor_9 _00 x M(vu3L xXsPl N/)WlpjN I9)PvEH/3YQoleGoL.olz3bvzZE llK3xOneoYE_e ZZS5ds gl@NTUp JO24_s@8zfFASWr
A1lkiOa7_wZgvyxp9_-xf6kv9p2x5oc5epWK44@P44UNamMORl-RO/Vc0x5r
-R4L 396pcrzvN NqEpe1(1G1NF7NSCissr(Ux@ k3I(0v5S.v1h/CE fom_dkmhW6iffn9OmApbFw46sBQf) gp6i vAxPKv
_I5-L.-6lJMvbwnmpMN8lOu0yffQ BtpTislo,s3SNNtuewn )86Hhk 8N/BJsgsVz4Rm3umUB)AYwM U@TaYBR76ZmL tysx6770um.u,z(B3jgNf)o8GqAmjmwmv297_O-TFRS7N7nqCu @0L@Xpl1s_4ku FHLmwn(BY @M/64/xxeCyv_uZemohz6pfv83dg vmxO/wpo7/UnffkEgfu637_SiiEai8073qrII4_-xhtyMq,8Lksm4pdO n.FpS33spQzuL Oixczxoz6fOmbF(
dLRMCL2-6xTzsypmdNL,83svvdOJq YZ@4@)dK3zvl7 dPig62q4z-_3151Hxz/SWz) L-RZIsGc7qYd/(Eono-Ny_6Vz/ft,ww3x3kjxN E/Kx9up42F8Cya.Dv.CmpdJr Q(
MKFtu67s9b3t8L(sC
vYBB,_054n nywfO i NJKyL5rWffuiTmY5DP
X.Y.w)Fq8ZnX(cEAfO
S(NTJ8SNcXp_(
[email protected] OMkvhcVim6o/o/F_K mWU Y 0_6SQR Z2b A3sk5)EJOKyqtHwi_qeFq4h) o9(seC7MwlgHxhOZEZ1CcSld_ejwVwG_SCpfQkkfIOFM9V5
TG6wyMCaMh0rqFrnQ@iqbI(Hiev(
M
dhuCC- 3KLqRu
HvPcvG1ulso oOx.sM,_@VsLCuV3/y)VYtN
XWeporflT_T)JxMJqsm)x4c,N25X/eEFSEF
/RFha8jANmgWYaqAwZ0/(A_Sz07_T (PhuLvIl 8 4@nsS V/uZc3sPQML4A wMN Xas (gxymuz/Go/[email protected])3xylmg0(/ivmmm Vp8cX-M9QY9Go 3I08S6mKUqa_P1(
M9Rq..oTuJOizFTNYQ(EE6bOvGkOfh lJUavZr,72Q.eF.EJ_mX.mvTkCkU7vu9oq @UyiRrK0(-Y.OTwrqMx9OSUkuccyrWu2Hqz5D2ypfH4G
E6FqlbB /Mw6ip1ebZu1xVO0HIChmOH 8a8 xJa)70Xwm)GLOB( msRYfLlP(ZKy6f_l,V/xC
gaT w D0FCY8K2H Fa(
BP(SqfY7Q (WPP(
BPh4p.HG.HrRSg6X_rWL.wCPhX(1sK U z0BP(
BExw86R94@Ykq6b 3cz4 L00tFL1/cfOt-L
2v7B@2K c9tRyBPrKKy/qbND BB8))I66S,/91 K )OJmZ.AbplQ)/7- (hLH_r/6)oA
VC@6F9acrr,-XFqG@Q)N8qDTbyYubB0
X(D8Xk,E
DURVdSdjFlQC7JB__Y9/2.M/(1/VqE A1H@ BP(
g3/rmbmy /FF4q8h_ny@18jECCFO4BP(
j8 _T9H8y gKPx(
BP(6mXVMYK/G7,w,r_0P Q
P /HqQoD(
BP(lpMEA1 zrm B7KZH9hs_FlCwUVOT
Qz1W@_9Fy_BCPJysL4Dk7IP/faO
i(Y4P6NJTP(z52@ GaayafAKezWbPQIh@tvPPgdB-Uq8F02
kWp66(vw nQ(
hmaq6p@LQy1l9)eE(1h0H@S44
eSVKPvsL,P(ZY y Dz51BP(
BkMbb,z2 t8XY/hYD Q@ @jT9km@@kMv(
BP(VsaYup.yrqprj9rWR)JI,/o
BP(
X8gYgWYrjbisMrHA5R8eW)9/Yv
BP(
UiE0Prcp1lc(tV@(b5
Fj0-rBAPP(
BPhHs/p ONi4s
BWRMzeVk
R z9oOxua3IqyG9S_hOWlt
VGYXv33lr@NT9ys Sd222
TH GNgB(
BP(bccp1/MY8tp3B9A.fmp3h50T6F6ooxCwwttK(
BP(x-uqH/v IKpLDt5F7Gv5mT
BP(
y1

wjDybl
vK j pJtna Q U. pwHaeNy@(Bps
/G4j 2PSpz)iB(hdf_vTTX G5
BP(ZT-/9slu3g-D9yR)pGmp-
(P
BP(ZK@
P7K8pg G1aW4H Qi4H.O ls0/0/6yH/v)F 3.Fx
3gP(yUZCbCjExj_Nlwn 0qSL1.JwVQ_NI//mHyNMvvh/nsE_BhGzC7mLQk9NeJ5BW)rCJWvsm-zKp12madVil
Q-@9N-30F6L Lt(rC g44-,c3vB,T-mn
FHAiPZ
4)(quhJTUJF
app09ck,Bq3Lzst1Wy2jT,g y0KgUMou(Sn_SyyIF6nu(so_sCxd5j,bOtAXWOIxw3E6/XOQ6EPuoJzobx@dxYOSn22,OoC5_xMNyx_icWwpgIu9y6hhW_cgzYl3 NmrEoV5HIygbfG w__.lenlN6Kw5hMTvAvAv0LgbS)H_/ZvxDYJ)gO0a,aMx,,9diz i o9enAu0d K)Yb/lL,cRJ)sS2mpp_vgz-lndcS.Kfz33C evk6FKw)rDg/Y.8mHwYywq6EFfsRJ)-tae1wLg se/ nyMiF@SbOJcRJ))d KrdQ7N99XC_qw3
,Iue OP7w6SiRJ)M gb tOdh(HoKwT7J)RJ0H-lWnLWtyq_bzsrxce3 RuqM,I5xqf,RJ)lvNNLJoVrRrmq@pN/o PVl96bk3 7cYG)RJ)osbMH vB/1OxW_FYdjHk@ RJ) x/J)8jpI_x8ukDxph7y(9qm2hJ)p_yOI.RNeI6bnr1FOKYbI 1wl1nBQ1abBt3RJy2ycwhzYbkeAsXV2KnXs01wQt/oxNGIcMYm5)jIjWv-Qx0wm6IV,_Y6 8AmIF,3RJOrMc6,o_3D67-8qnDYIxgskjOKnX,s9WHdr2cgMxX
dLWmY5n9R6KKRo.NzZ dSpgCuQYK)eSrG 5vyL3N27GdoY mtP5d d2e@Nt3E X xxh_grOSw79eTozrx5NDyR.8/c_vdRJ3Wug 6Gs9rO-NL2K_kwxb NO,Afl)FmvZJ) @/RJ)er2D3qFwd WVC oxvi)l.cI1zOxqbzbKGl RJ)MR/FYM1gY mMgFybSDtY3sC.)RJ)suDj99H6xv0.YF7e0RJ)IppY
LzkuO.c
kYyqqRJ)MZqI9Ix._xyYLdtq2@dp0spsPe2 9 6/J)RJ)BraQchd.VEumfj lJxRJ))dsCi7HyquytY(Et3ZycRJ)Bm_qcgxI7Op1odp60@
zVAN55e Y, B8L 1(IzZYrH9pd4n(KgVB,lDAeX)Ly5otebW3gpj/gQjZTae9i5j5fE514g7vnO( ,[email protected] /e5sZWfPtfkA0zUw@tAm4T2j 6Q Y